Search results for "Neural Plasticity"

showing 5 items of 5 documents

Indicaxanthin is able to modulate human motor cortical excitability and plasticity

Cortical excitabilityNeural PlasticityNutraceutical
researchProduct

Plasticity of brain wave network interactions and evolution across physiologic states

2015

Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions repre…

AdultMaleNerve netCognitive NeuroscienceNeuroscience (miscellaneous)Sensory systemPlasticityCognitive neurosciencelcsh:RC321-571Young AdultCellular and Molecular NeuroscienceNeuroplasticitymedicineHumanslcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchSlow-wave sleepCerebral CortexNetwork physiologySleep StagesNeuronal PlasticityBrain WaveBrain wave interactions; Network physiology; Neural plasticity; Sleep; Time delay stability; Adult; Brain Waves; Cerebral Cortex; Female; Humans; Male; Nerve Net; Neuronal Plasticity; Sleep; Young Adult; Neuroscience (miscellaneous); Cellular and Molecular Neuroscience; Sensory Systems; Cognitive NeuroscienceNetwork dynamicsBrain WavesSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Sensory Systemsbrain wave interactionsmedicine.anatomical_structureBrain wave interactionFemaletime delay stabilityNerve NetSensory SystemPsychologySleepNeuroscienceHumanNeuroscienceneural plasticityFrontiers in Neural Circuits
researchProduct

Existence of muscarinic acetylcholine receptor (mAChR) and fibroblast growth factor receptor (FGFR) heteroreceptor complexes and their enhancement of…

2017

Abstract Background Recently, it was demonstrated that G-protein-coupled receptors (GPCRs) can transactivate tyrosine kinase receptors in absence of their ligands. In this work, driven by the observation that mAChRs and fibroblast growth factor receptors (FGFRs) share signalling pathways and regulation of brain functions, it was decided to explore whether mAChRs activation may transactivate FGFRs and, if so, to characterize the related trophic effects in cultured hippocampal neurons. Methods Oxotremorine-M transactivation of FGFRs and related trophic effects were tested in primary hippocampal neurons. Western blotting and in situ proximity ligation assay (PLA) were used to detect FGFR phosp…

Male0301 basic medicineHippocampusBiochemistryReceptor tyrosine kinaseReceptors G-Protein-CoupledRats Sprague-DawleyTransactivation0302 clinical medicineMuscarinic acetylcholine receptorNeural plasticityNeuronsNeuronal PlasticitybiologyReceptors MuscarinicCell biologyFibroblast growth factor receptorFibroblast Growth Factor 2Signal TransductionProto-oncogene tyrosine-protein kinase Srcmedicine.medical_specialtyNeuriteNeuronal OutgrowthBiophysicsHeteroreceptor03 medical and health sciencesHippocampuInternal medicinemedicineAnimalsReceptor Fibroblast Growth Factor Type 1Rats WistarMolecular BiologyTransactivationAnimalOxotremorineFibroblast growth factor receptor 1Receptor Muscarinic M1NeuronReceptors Fibroblast Growth FactorRatsFGFR1030104 developmental biologyEndocrinologyM1receptorBiophysicHeteroreceptor complexebiology.proteinRat030217 neurology & neurosurgeryBiochimica et Biophysica Acta (BBA) - General Subjects
researchProduct

Perineuronal Net Formation and the Critical Period for Neuronal Maturation in the Hypothalamic Arcuate Nucleus

2019

In leptin-deficient ob/ob mice, obesity and diabetes are associated with abnormal development of neurocircuits in the hypothalamic arcuate nucleus (ARC)1, a critical brain area for energy and glucose homoeostasis2,3. Because this developmental defect can be remedied by systemic leptin administration, but only if given before postnatal day 28, a critical period for leptin-dependent development of ARC neurocircuits has been proposed4. In other brain areas, critical-period closure coincides with the appearance of perineuronal nets (PNNs), extracellular matrix specializations that restrict the plasticity of neurons that they enmesh5. Here we report that in humans and rodents, subsets of neurons…

LeptinEndocrinology Diabetes and MetabolismPeriod (gene)BiologyArticleMiceArcuate nucleusPhysiology (medical)Internal MedicineAnimalsarcuate nucleusglucose homeostasisObesityNeuronsArc (protein)LeptinPerineuronal netArcuate Nucleus of Hypothalamusenergy 33 balanceCell Biologycritical periodMice Inbred C57BLnervous systemMedian eminenceNeuron maturationGABAergicNerve Netperineuronal netNeuroscienceneural plasticity
researchProduct

Contrasting coping styles meet the wall: A dopamine driven dichotomy in behavior and cognition

2017

Individual variation in the ability to modify previously learned behaviour is an important dimension of trait correlations referred to as coping styles, behavioral syndromes or personality. These trait clusters have been shaped by natural selection, and underlying control mechanisms are often conserved throughout vertebrate evolution. In teleost fishes, behavioral flexibility and coping style have been studied in the high (HR) and low-responsive (LR) rainbow trout lines. Generally, proactive LR trout show a behaviour guided by previously learned routines, while HR trout show a more flexible behaviour relying on environmental cues. In mammals, routine dependent vs flexible behavior has been …

0301 basic medicineSTRESSNEUROSCIENCESTELEOST FISHESFLEXIBILITYRAINBOW-TROUTINDIVIDUAL VARIATIONteleostsAmygdalacognitive flexibilitylcsh:RC321-571Developmental psychology03 medical and health sciencesBehavioral syndrome0302 clinical medicineLimbic systemmonoamineslimbic systembiology.animalNeuroplasticitymedicine14. Life underwaterlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchbiologyDANIO-RERIOGeneral NeuroscienceCognitive flexibilityVertebrateNEURAL PLASTICITYbiology.organism_classificationRECEPTORSAMYGDALATrout030104 developmental biologymedicine.anatomical_structurepersonalityANIMAL PERSONALITIESRainbow troutNeuroscience030217 neurology & neurosurgeryNeuroscience
researchProduct